

MATHEMATICS ENRICHMENT CLUB.¹ Solution Sheet 1, May 7, 2012

Answers

1. Either p|q or p|q-1 (1st condition), and either q|p or q|p+1 (2nd condition). We have the following scenarios:

	pm = q	pm = q - 1
nq = p	p = q	mnq = q - 1 implies $p = 1 = q$
nq = p + 1	pmn = p + 1 implies $p = 1 = q$	pm + nq = p + q implies $p = 1, q = 2$

- 2. Easy
- 3. Complete the square, then take di erence of two squares. Answers are $(x^2 2x + 2)(x^2 + 2x + 2)$ and $(x^2 \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$.
- 4. Suppose $x \le y \le z$. Then $5/8 = 1/x + 1/y + 1/z \le 3/x$, so x < 5. This means there are only 4 possible values for x.
 - x = 1 No solutions.
 - x = 2 Solve 1/y + 1/z = 1/8. So $8 \le y \le 2 * 8$. Testing y values in this range gives: (9,72), (10,40).
 - x = 3 Solve 1/y + 1/z = 7/24. Since 1/4 < 1/y + 1/z < 1/3. So $3 \le y \le 2 * 4$, Answers (4, 24), (6, 8).
 - x = 4 Solve 1/y + 1/z = 3/8. Answers: (3,24), (4,8).
- 8. You can check that the angles are the same for these triangles:

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres , Macquarie Uni.