Contanto

1.	Staff contact details	2
	Contact details and consultation times for course convenor	
	Contact details and consultation times for additional lecturers/demonstrators/lab staff	2
2.	Important links	

1. Staff contrat details

Contact details and consultation times for course convenor

Name: Dr Kana Kanapathipillai Office location: J17/AW408J

Tel: (02) 9385 4251

Moodle: https://moodle.telt.unsw.edu.au/login/index.php

Generally, problem-solving class time should be used for direct consultation. Following problem-solving class if you need further consultation, then you may use phone or email for making an appointment for further consultation.

Contact details and consultation times for additional lecturers/demonstrators/lab staff ou

Name: Mr Garen Douzian (Head Demonstrator)

Email: g.douzian@unsw.edu.au

Moodle: https://moodle.telt.unsw.edu.au/login/index.php

2. Important links

Moodle

Lab Access

Course Outline: MECH3110

further reading, and revising for any examinations.

Contact hours

	Day	Time	Location
Lectures	Tuesday	5pm - 6pm	Ritchie

Week	Topic	Location	Suggested Readings
5	No Lecture		
3	No Lecture		
6	Bolted Joints 2	Ritchie Theatre	Lecture notes, Moodle & Textbook
0	Bearings 1	ChemSc M17	Lecture notes, Moodle & Textbook
7	Bearings 2	Ritchie Theatre	Lecture notes, Moodle & Textbook
'	Guest Lecture	ChemSc M17	Lecture notes, Moodle
8	Shafts 1	Ritchie Theatre	Lecture notes, Moodle & Textbook
	Shafts 2	ChemSc M17	Lecture notes, Moodle & Textbook
9	Shafts 3	Ritchie Theatre	Lecture notes, Moodle & Textbook
9	Gears 1	ChemSc M17	Lecture notes, Moodle & Textbook
10	Gears 2	Ritchie Theatre	Lecture notes, Moodle & Textbook
10	Fatigue Analysis	ChemSc M17	Lecture notes, Moodle & Textbook

Problem-solving sessions (PSS) will be conducted on Tuesdays between 12 pm - 2 pm or 2 pm - 4 pm in Ainsworth

6. Assessment

Assessment overview

Assessment	Group Project? (# Students per group)	Length	Weight	Learning outcomes assessed	Assessment criteria	Due date and submission requirements	Deadline for absolute fail	Marks returned
Client Negotiations and report	Yes (6)	~ 500 words	10%	1 to 4	Interpretation and analysis of client requirements, formulation of competitive design for tender under simulated conditions.	Client negotiation: Week 3 during PSS Report: Midnight, Friday 13 th March via Moodle	Week 5	Within one week after submission
Design Pitch	Yes (6)/No	Not applicable	20%	1 to 4	Presentation skills, design familiarity and explanation in professional setting.	During wee		' '

Course Outline: MECH3110

Assignments

The client negotiation and the project reports be submitted electronically through a drop box in Moodle by mid-night, Friday in the weeks indicated in the assessment overview. The project is a group-based task. You will be marked for your personal contribution to the team outcome; this will be done by using team evaluation software available on Moodle.

The project has a group presentation of the final design of the major assignment during the tutorial times in weeks 7 and 8. Although it is a group presentation, individual members will be assessed on design knowledge, presentation, use of visual aids and answering questions from the audience. Prototype testing of the major assignment will be conducted in Week 11 in J18/214. The time will be advised in due course. Your personal contribution to the prototype testing will also be marked through the Moodle Team evaluation software.

The reports will be assessed based on your ability to adhere to the recommended formats for submission and on the quality of your discussion in relation to the content. All calculation tasks will be assessed on accuracy supported by a clear and coherent development of the method according to the course standard format. All CAD modelling/drawing and hand sketches will be assessed on dimensional accuracy, functional proportion and comparison to industry standards as given in AS1100.

The assessment tasks and related information

Course Outline: MECH3110

- b. Online quizzes where answers are released to students on completion, or
- c. Professional assessment tasks, where the intention is to create an authentic assessment that has an absolute submission date, or
- d. Pass/Fail assessment tasks.

Marking

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Examinations

There will be no final examination for this course during the formal university examination period.

Special consideration and supplementary assessment

If you have experienced an illness or misadventure beyond your control that will interfere with your assessment performance, you are eligible to apply for Special Consideration prior to submitting an assessment or sitting an exam.

Please note that UNSW now has a <u>Fit to Sit / Submit rule</u>, which means that if you sit an exam or submit a piece of assessment, you are declaring yourself fit enough to do so and cannot later apply for Special Consideration.

For details of applying for Special Consideration and conditions for the award of supplementary assessment, please see the information on UNSW's <u>Special Consideration page</u>.

7. Expected resources for students

Recommended Textbook@]TETQ0000008 0 52 82 reW*nBT/F 04Tf1 0 2Lang (nB)BDC q0000008 0 52 82

8. Antonies est le mistroper de

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School's Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include reduction in the number of assessments.

9.

10. Administrative matters and links

All students are expected to read and be familiar with UNSW guidelines and polices. In particular, students should be familiar with the following:

Attendance

UNSW Email Address

Special Consideration

Exams

Approved Calculators

Academic Honesty and Plagiarism

Equitable Learning Services

10

Stage 1 Competencies for Professional Engineers

	Program Intended Learning Outcomes			
dge	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing			
Knowledg Skill Base	PE1.3 In-depth understanding of specialist bodies of knowledge			
PE1: Knowledge and Skill Base	PE1.4 Discernment of knowledge development and research directions			
PE1: and	PE1.5 Knowledge of engineering design practice			
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice			
ng lity	PE2.1 Application of established engineering methods to complex problem solving			
neer Ab	PE2.2 Fluent application of engineering techniques, tools and resources			
PE2: Engineering Application Ability	PE2.3 Application of systematic engineering synthesis and design processes			
PE2 App	PE2.4 Application of systematic approaches to the conduct and management of engineering projects			
ssional onal tes	PE3.1 Ethical conduct and professional accountability			
	PE3.2 Effective oral and written communication (professional and lay domains)			
PE3: Professiona and Personal Attributes	PE3.3 Creative, innovative and pro			

11